首页> 外文OA文献 >Fast Low-rank Shared Dictionary Learning for Image Classification
【2h】

Fast Low-rank Shared Dictionary Learning for Image Classification

机译:用于图像分类的快速低秩共享字典学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Despite the fact that different objects possess distinct class-specificfeatures, they also usually share common patterns. This observation has beenexploited partially in a recently proposed dictionary learning framework byseparating the particularity and the commonality (COPAR). Inspired by this, wepropose a novel method to explicitly and simultaneously learn a set of commonpatterns as well as class-specific features for classification with moreintuitive constraints. Our dictionary learning framework is hence characterizedby both a shared dictionary and particular (class-specific) dictionaries. Forthe shared dictionary, we enforce a low-rank constraint, i.e. claim that itsspanning subspace should have low dimension and the coefficients correspondingto this dictionary should be similar. For the particular dictionaries, weimpose on them the well-known constraints stated in the Fisher discriminationdictionary learning (FDDL). Further, we develop new fast and accuratealgorithms to solve the subproblems in the learning step, accelerating itsconvergence. The said algorithms could also be applied to FDDL and itsextensions. The efficiencies of these algorithms are theoretically andexperimentally verified by comparing their complexities and running time withthose of other well-known dictionary learning methods. Experimental results onwidely used image datasets establish the advantages of our method overstate-of-the-art dictionary learning methods.
机译:尽管不同的对象具有不同的类特定功能,但它们通常也共享相同的模式。通过分离特殊性和公共性(COPAR),在最近提出的字典学习框架中部分地利用了这种观察。受此启发,我们提出了一种新颖的方法来显式并同时学习一组常见模式以及具有更直观约束的分类专用类。因此,我们的词典学习框架的特点是共享词典和特定的(特定于类的)词典。对于共享字典,我们强制执行低秩约束,即声称其扩展子空间应具有较小的维数且与此字典对应的系数应相似。对于特定的字典,我们将费舍尔歧视学习(FDDL)中所述的众所周知的约束强加给它们。此外,我们开发了新的快速准确的算法来解决学习步骤中的子问题,从而加快了算法的收敛速度。所述算法也可以应用于FDDL及其扩展。通过将算法的复杂度和运行时间与其他知名词典学习方法进行比较,从理论上和实验上验证了这些算法的效率。广泛使用的图像数据集的实验结果确立了我们的方法优于最新词典学习方法的优势。

著录项

  • 作者

    Vu, Tiep; Monga, Vishal;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号